Relative and Absolute Perturbation Bounds for Weighted Polar Decomposition

نویسندگان

  • Pingping Zhang
  • Hu Yang
  • Hanyu Li
چکیده

Let Cm×n, Cm×n r , C m ≥ , C m > , and In denote the set of m × n complex matrices, subset of Cm×n consisting of matrices with rank r, set of the Hermitian nonnegative definite matrices of order m, subset of C ≥ consisting of positive-definite matrices and n × n unit matrix, respectively. Without specification, we always assume that m > n >max{r, s} and the given weight matrices M ∈ C > ,N ∈ C >. For A ∈ Cm×n, we denote by R A , r A , A∗, AMN N−1A∗M,AMN, ‖A‖ and ‖A‖F the column space, rank, conjugate transpose, weighted conjugate transpose or adjoint , weighted Moore-Penrose inverse, unitarily invariant norm, and Frobenius norm of A, respectively. The definitions of AMN and A † MN can be found in details in 1, 2 . The weighted polar decomposition MN-WPD of A ∈ Cm×n is given by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new perturbation bounds of generalized polar decomposition

Some new perturbation bounds of the positive (semi) definite polar factor and the (sub) unitary polar factor for the (generalized) polar decomposition under the general unitarily invariant norm and the spectral norm are presented. By applying our new bounds to the weighted cases, the known perturbation bounds for the weighted polar decomposition are improved. 2014 Elsevier Inc. All rights reser...

متن کامل

New Perturbation Bounds for Nonnegative and Positive Polar Factors

The changes in the nonnegative and positive polar factors of generalized polar decomposition and polar decomposition are studied under the additive perturbation. Some new perturbation bounds are obtained. These bounds are different from precious ones in form and measure and, in some cases, may be smaller than the corresponding existing ones. Furthermore, the corresponding perturbation bounds fo...

متن کامل

Multiplicative Perturbation Bounds for Weighted Unitary Polar Factor

The multiplicative perturbation bounds for weighted unitary polar factor are considered in the weighted unitary invariant norm, weighted spectral norm, and weighted Frobenius norm in this paper. As the special cases, new bounds for subunitary and unitary polar factor are also derived. These new bounds improve the corresponding results published recently to some extent. Mathematics subject class...

متن کامل

Perturbation bounds for $g$-inverses with respect to the unitarily invariant norm

Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...

متن کامل

Three Absolute Perturbation Bounds for Matrix Eigenvalues Imply Relative Bounds

We show that three well-known perturbation bounds for matrix eigenvalues imply relative bounds: the Bauer-Fike and Hooman-Wielandt theorems for diagonalisable matrices, and Weyl's theorem for Hermitian matrices. As a consequence, relative perturbation bounds are not necessarily stronger than absolute bounds; and the conditioning of an eigenvalue in the relative sense is the same as in the absol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012